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Abstract
The magnetic field dependences of the frequencies of standing spin-wave modes
in a tangentially magnetized array of thin rectangular permalloy dots (800 ×
550 nm) were measured experimentally by a Brillouin light scattering technique
and calculated theoretically using an approximate size-dependent quantization
of the spin-wavevector components in the dipole-exchange dispersion equation
for spin waves propagating in a continuous magnetic film. It was found
that the inhomogeneous internal bias magnetic field of the dot has a strong
influence on the profiles of the lowest spin-wave standing modes. In addition,
the dynamic magnetization distributions found for both longitudinally and
transversely magnetized long magnetic stripes gives a good approximation
for mode distributions in a rectangular dot magnetized along one of its in-
plane sides. An approximate analytic theory of exchange-dominated spin-wave
modes, strongly localized along the dot edge that is perpendicular to the bias
magnetic field, is developed. A good quantitative agreement with the results of
the BLS experiment is found.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It has been shown by Brillouin light scattering (BLS) spectroscopy [1] that the lowest spin-
wave mode in the spectrum of a transversely magnetized micrometre-width thin permalloy
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stripe with rectangular cross-section (and in the spectrum of a tangentially magnetized thin
rectangular dot) is localized in regions of strong inhomogeneity of the internal magnetic field
near the stripe edges. A similar edge localized mode was observed in in-plane magnetized
cylindrical dots by Gubbiotti et al [2]. It has been also shown in [1] that this localized
mode, being the lowest in frequency in the spectrum, is nevertheless dominated by exchange
interaction. These ideas about the nature of the lowest mode in the stripe spectrum were
confirmed by direct measurements using the spatially resolved Kerr technique carried out by
the group of Crowell [3]. Further numerical calculations conducted in [4, 5] have demonstrated
possible spatial profiles of such localized modes (see e.g. figure 5 in [4] and figure 6 in [5])
while further experimental investigations by Bayer et al [6] have shown that several localized
exchange-dominated modes can be formed near the edge of a transversely magnetized long
magnetic stripe if the external magnetic field is sufficiently large.

In the current paper we present experimental data on the magnetic field dependence of
the frequencies of quantized and localized spin-wave modes in the spectrum of a submicron-
sized rectangular magnetic dot, and demonstrate that the lowest mode in this spectrum can be
identified as a mode having exchange-dominated localization along the direction of the bias
magnetic field. We also develop a simple approximate analytic theory based on the theory of
Mathieu functions, which describes the spatial profiles of such localized modes and allows
us to calculate the frequencies of these modes as functions of the external magnetic bias
field.

Recently, several authors have investigated both experimentally and numerically the spin-
wave modes existing in the regions in a magnetic element where the static magnetization varies
with coordinate (edge domains or unsaturated parts of the sample) [7–9]. It should be stressed
that in the current paper we are considering spin-wave modes localized near the edge of the
magnetic element, but still in the fully saturated region where static magnetization is almost
constant and parallel to the external bias magnetic field. In other words, we are working
in the case of strong external magnetic fields in terms of [7–9]. The paper is organized as
follows. In section 2 we describe the BLS measurements of the rectangular permalloy dots
while in section 3 analytical and numerical calculations of the localized spin-wave modes
in thin rectangular elements are presented. The comparison of the experimental data and
developed theory is done in section 4. Finally, the conclusions are drawn in section 5.

2. Experiment

A magnetic array of rectangular permalloy (Ni81Fe19) dots was fabricated at the Elettra
synchrotron radiation facility, LILIT beamline [10], exploiting x-ray lithography in
combination with a lift-off process [11]. The x-ray mask (necessary to perform the lithography)
was a silicon nitride (Si3N4) membrane, 100 nm thick, coated with a base plating of Cr–Au.
Electron beam lithography was used to fabricate the Au absorbing structures of the mask.
A permalloy (Ni81Fe19) layer with nominal thickness of L = 30 nm was evaporated over
the resist pattern; during the evaporation the pressure was in the range (3.5–5) × 10−6 Torr.
The rectangular dots have lateral dimensions l = 800 nm and w = 550 nm and separation
� = 200 nm. Based on our previous experience with permalloy dots of different shapes,
the above value of the interdot distance � is large enough to guarantee negligible inter-dot
magnetostatic interaction. During the fabrication process, part of the permalloy film was left
unpatterned in order to compare the experimental results of the patterned region and of the
unpatterned one. A detailed magnetic characterization of such an array of dots accomplished
by magnetic force microscopy, magneto-optical Kerr effect and micro-magnetic simulations
is presented elsewhere [12, 13].
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Figure 1. The BLS spectra measured at the light incidence angle θ = 10◦ and 1.0 kOe external
field, for the patterned (upper panel) and the continuous reference film (lower panel). The two peaks
close to the central elastic peak (indicated by asterisks in the upper panel) are artefacts produced
by the mechanical shutter placed at the entrance of the interferometer to maintain the alignment of
the Fabry–Perot cavity.

The BLS measurements were carried out at room temperature at the GHOST laboratory
of the University of Perugia [14]. Light from a single mode diode-pumped solid state laser
(λ = 532 nm), typically with a power of 200 mW and polarized in the incidence plane, was
focused onto the sample surface, using a camera objective of numerical aperture 2 and focal
length 50 mm. The back-scattered light, polarized perpendicular to the scattering plane, was
collected by the same objective used for the focalization and analysed in a high-contrast,
tandem (3 + 3) passes Sandercock-type tandem Fabry–Perot interferometer [15]. A bias
external magnetic field, variable between 0 and 3 kOe, was applied parallel to the film surface
and perpendicular to the plane of incidence of light. In the backscattering geometry, the
conservation of momentum in the photon–magnon interaction implies that the transferred
spin-wave wavevector parallel to the film surface is linked to the optical wavevector ki and to
the angle of incidence θi by the equation q‖ = 2ki sin θi .

In figure 1 a typical BLS spectrum of the arrays of rectangular dots (upper part) is compared
to that of the continuous unpatterned film (lower part); the incidence angle was θ = 10◦,
corresponding to a wavenumber q‖ = 0.41×105 cm−1. In the spectrum of the continuous film
two peaks are visible, the DE peak at 12.9 GHz and the first perpendicular standing spin-wave
(PSSW) at 23.5 GHz, whereas the BLS spectrum of the patterned film reveals at least four
peaks in the frequency range between 12 and 17 GHz, besides the bulk one at 23.5 GHz. A best
fitting procedure of both the DE and the bulk modes in the unpatterned film as a function of the
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Figure 2. Magnetic field dependence of the BLS spectra of the rectangular permalloy element for
the fixed incidence angle of light θ = 10◦ .

incidence angle of light provides a film thickness of 27 nm, in good agreement with the nominal
thickness of 30 nm, and the values found for the other parameters, the saturation magnetization
4π Ms = 10.2 kOe, and the non-uniform exchange constant α = 2.5 × 10−13 cm2. All these
modes observed for the patterned permalloy sample are dispersionless and are observed in a
large wavevector range, as reported in our previous paper [16].

In figure 2, a series of BLS spectra for the patterned sample measured at different values
of the magnetic field applied and q‖ = 0.41 × 105 cm−1 are shown. The directions of the
applied field and the in-plane transferred wavevector are shown in the figure insets by the
arrows. The presence of a low frequency mode (indicated by the arrows) is clearly visible in
the spectra measured at large fields because it is at larger distance from the elastic peak. The
field dependence of the frequency of this mode will be calculated in the next section.

3. Theory of localized spin-wave modes

For the theoretical interpretation of the above described BLS experiment we shall use the
approximate theory of the spin-wave spectrum in a tangentially magnetized thin rectangular
magnetic elements (shown in figure 3) formulated in our recent paper [17]. We use the Cartesian
coordinate system with the Oz axis directed perpendicular to the plane of the rectangular
element.

We assume that the spins at the surfaces of the rectangular element that are perpendicular
to the axis Oz are unpinned (i.e. there is no surface anisotropy). In that case the lowest spin-
wave modes in this element have a uniform distribution of the variable magnetization along
the element thickness L, i.e. we consider the modes with the wavevector component kz = 0.
Denote the element width as w, length l, and assume that l � w. Our theory is based on
the approximate diagonal dispersion equation for dipole-exchange spin waves in a continuous
magnetic film (see equation (7) in [17]) and the assumption that to calculate mode frequencies in
a thin (L � w, L � l) magnetic element we can simply use the discrete values of the in-plane
spin-wavevector κ2

mn = k2
mx + k2

ny quantized due to the finite in-plane sizes of the rectangular
magnetic element (m, n are the integer indices to distinguish different spin-wave modes).
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Figure 3. Thin rectangular magnetic element and the system of the coordinates.

The quantization conditions, determining the discrete values of the wavevector projections
along the in-plane axes x and y, are given by equations (3) and (5) in [17]. Since the internal
bias magnetic field inside the rectangular element (figure 3) is inhomogeneous, it is necessary
to know the planar spatial distribution of variable magnetization in each particular spin-wave
mode of the element to be able to calculate the effective internal bias field for this mode using
equations (8), (9) in [17]. We also assume that the two-dimensional in-plane distribution of
the variable magnetization mmn(x, y) in any spin-wave mode of a rectangular element can
be represented as a product of the eigenfunctions of longitudinally �m(km x) and transversely
Tn(kn y) magnetized infinitely long magnetic stripes:

mmn (x, y) = Ms�m (kmx x) Tn(kny y). (1)

It is worth noting that, although the transverse (along the element’s thickness) variable z is not
explicitly present in equation (1), the finite thickness L of the rectangular magnetic element is
taken into account in our calculations.

In particular, the profiles of functions �m(kmx x) characterizing the spin-wave eigenmodes
in a longitudinally magnetized magnetic stripe (having thickness L, width w and L � w) are
strongly dependent on the stripe’s aspect ratio, L/w. The eigenfunctions�m(kmx x) are defined
by equation (10) in [18]. These eigenfunctions are of a purely dipolar nature and have the usual
cosinusoidal profile with relatively strong ‘pinning’ at the edges for low-frequency modes due
to the inhomogeneity of the dynamic dipolar field near the lateral edges of the stripe. This
pinning strongly depends on the stripe’s aspect ratio, L/w. The characteristic values of the
in-plane mode wave number kmx are approximately determined from equation (11) in [18].

The situation with the eigenfunctions Tn(kny y) characterizing the spin-wave eigenmodes
in a transversely magnetized magnetic stripe (having thickness L, width l and L � l) is
much more complicated due to the strong inhomogeneity of the static internal magnetic field
inside the transversely magnetized magnetic stripe along its width. This inhomogeneity is
also strongly dependent on the stripe’s aspect ratio L/ l and, therefore, is different for different
element thicknesses. Below we shall try to find spatial profiles of the eigenfunctions Tn(kny y)

in that case both numerically and analytically.
The coordinate-dependent internal static magnetic field can be easily calculated using

the effective coordinate-dependent demagnetizing factor Nyy(y) [19, 20] (see e.g. a particular
case of equation (16) in [19]). Therefore, the non-uniform internal bias magnetic field inside
a transversely magnetized magnetic stripe can be expressed in terms of the uniform external
bias field H and saturation magnetization Ms as

Hi(y) = H − 4π Ms Nyy (y) . (2)
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It should be noticed that equation (2) has physical meaning only in the spatial region where
Hi(y) � 0. It was shown in [21] that in the narrow regions near the lateral edges of the stripe
(edge domains) where static magnetization is not parallel to the bias field the equation (2)
gives negative values for Hi and it should be assumed that in these regions Hi = 0. Below we
shall only consider the regions in the magnetic elements that are completely saturated by the
external bias field.

In the case of a transversely magnetized long magnetic stripe the usual system of the
linearized Landau–Lifshitz equation of motion and Maxwell equations in the magnetostatic
limit can be reduced to the following integro-differential equation for the variable magnetization
m(y):[
−αωM

d2

dy2
+ ωHi(y)

]
Îm(y) = −iωT̂ m(y) − ωM

4π

∫ l/2

−l/2
dy ′ Ĝ(y, y ′)m(y ′), (3)

where

m(y) =
(

mx(y)

mz(y)

)
, Î =

(
1 0
0 1

)
, T̂ =

(
0 −1
1 0

)
, (4)

Ĝ(y, y ′)=
(

0 0
0 Gzz(y, y ′)

)
, Gzz(y, y ′) = 2

L
ln

[
(y − y ′)2

(y − y ′)2 + L2

]
, (5)

ωHi(y) = γ Hi(y), ωM = 4πγ Ms, γ is the gyromagnetic ratio, α is the exchange
stiffness measured in cm2, ω is the spin-wave mode frequency, and Ĝ(y, y ′) is the tensor
of magnetostatic kernels for long magnetic stripe (w → ∞) averaged over the thickness
coordinate z [22].

It is reasonable to assume that in the case of a thin transversely magnetized stripe the
boundary conditions for the variable magnetization at the lateral edges of the stripe will be
similar to the effective ‘dipolar pinning’ conditions obtained in the case of a longitudinally
magnetized stripe (see equation (8) in [18]).

Numerical solution of equation (3) in the case when dynamic dipole–dipole interaction
(described by the integral term in equation (3)) is dominant and the exchange interaction
(described by the differential term in (3)) is negligible yields the magnetization distributions
that, although not exactly cosinusoidal due to the inhomogeneity of the bias magnetic field, are
nevertheless sufficiently similar to the dipolar eigenfunctions of the longitudinally magnetized
stripe (defined by equation (10) in [18]). We can use these functions in our approximate
calculations assuming that in the dipolar region T (kny y) ∼= �n(kny y), and the characteristic
values of the in-plane mode wavenumber kny are approximately determined from equation (11)
in [18] where the element’s width w is replaced by the element’s length l. We note that this
assumption will be correct only for sufficiently large magnetic elements having width greater
than roughly 1 µm. In a smaller element the effect of dipolar localization of the lowest dipolar
spin-wave mode near the centre of the element (see [17]) does not take place.

In the case when the spin-wave mode is localized somewhere and the exchange interaction
is dominant, the spatial distributions of the spin-wave modes are quite different from the dipolar
case. It is known [1, 3] that in this case spin-wave modes can be presented as localized near the
stripe edges. Let us try to find the exchange-dominated spin wave eigenfunctions Tη(kηy y) of
a transversely magnetized stripe both numerically and analytically. We changed notation for
the quantization index n → η of these eigenfunctions to distinguish the exchange-dominated
eigenfunctions Tη(kηy y) from the dipole-dominated eigenfunctions �n(kny y).

If the exchange interaction is dominant, we can neglect in zero approximation the integral
in equation (3) and can formulate the following eigenvalue problem to find the eigenvalues
λη and the eigenfunctions Tη(kηy y) of variable magnetization in a transversely magnetized
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Figure 4. The dynamic magnetization mode profiles for a transversely magnetized stripe
(L = 33 nm, w = 1000 nm, 4π Ms = 10.2 kOe, α = 2.5 × 10−13 cm2).

magnetic stripe:[
−α

d2

dy2
+

ωHi(y)

ωM

]
Tη(y) = ληTη(y). (6)

We note that the variable internal bias magnetic field in this problem is defined by
equation (2). That is, we included into consideration in equation (6) the static dipolar field but
neglected its dynamical part. This part will be accounted for in the form of diagonal matrix
elements on the exchange-dominated eigenfunctions of the differential operator in equation (6).

The analytic solution of equation (6) is difficult to find due to the rather complicated
coordinate dependence of the internal field Hi(y) (2), but numerical solutions can be easily
found. These solutions found for the case of a thin permalloy stripe (L = 33 nm, w = 1000 nm,
4π Ms = 10.2 kOe, α = 2.5×10−13 cm2) transversely magnetized by the uniform external bias
magnetic field 900 Oe are shown in figure 4. It turns out that two eigenfunctions (symmetric
and anti-symmetric) correspond to each eigenvalue λη of the spectral problem (6), i.e. the
corresponding spin-wave frequencies are degenerated. The eigenfunctions with the lowest
indices η = 0, 1, 2, 3 are strongly localized near the stripe edges. With the increase of the
mode index, localization diminishes and more nodes appear in the mode profile. We note that a
similar frequency degeneracy of the symmetric and anti-symmetric edge modes was also found
in the numerical micromagnetic simulations of the normal modes of a nano-sized rectangular
prism by Grimsditch et al [5].

Let us now try to find approximate expressions for the exchange-dominated spin-wave
eigenfunctions Tη(kηy) analytically. To achieve this goal, let us replace in equation (6) the
real coordinate-dependent internal magnetic field Hi(y) (2) by a model field HM(y)

HM(y) = HM0

2

[
1 + cos

(
2π

l
y

)]
(7)

which has a similar shape, but for which equation (6) has a known analytic solution. Indeed,
if we replace in equation (3) Hi(y) by HM(y), this equation can be reduced to a standard form
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of a Mathieu differential equation (see e.g. [23, 24]):[
d2

dξ2
+ aη − 2q(HM0) cos(2ξ)

]
Tη(ξ) = 0. (8)

where

ξ = πy

l
, aη = λη

α(π/ l)2
− 2q(HM0), q(H0) =

(
γ HM0

4ωM

)
1

α(π/ l)2
, (9)

and η = 1, 2 . . . is the order of a periodic Mathieu function.
It is known from the theory of Mathieu equations [24] that there exists an infinite

set of characteristic values aη(q) which yields even periodic solutions of the equation (8)
T s

η (ξ) = Ceη(ξ) (η = 0, 1, 2, . . .) called even Mathieu functions of the order η and
another infinite set of characteristic values bη+1(q) which yields odd periodic solutions of
the equation (8) T a

η (ξ) = Seη+1(ξ) (η = 0, 1, 2, . . .) called odd Mathieu functions of the order
of η + 1. For the typical parameters of the permalloy stripe (l = 1.0 µm, 4π Ms = 10.2 kOe,
α = 2.5 × 10−13 cm2, Hi(0) = HM0 = 1.0 kOe) the parameter q(HM0) in the Mathieu
equation (8) is q(H0) ≈ 80 	 1. For the case of q 	 1, it is possible to obtain a simple
asymptotic expression for the characteristic values of the Mathieu equation (8) in the form ([24],
p 126):

aη(q) = bη+1 (q) ∼= −2q + 2(2η + 1)
√

q − 1
4 (2η2 + 2η + 1), (10)

which leads to a simple expression for the eigenvalues in our original equation (6) in the form

λη(HM0) =
[

2(2η + 1)
√

q(HM0) − 1

4
(2η2 + 2η + 1)

]
α

(π

l

)2
, (11)

where the index η = 0, 1, 2, . . ..
It is also possible to obtain explicit asymptotic expressions for odd and even Mathieu

functions in the limit q 	 1 in terms of the elementary functions [24]:

Ceη(ξ, q) = �1η(ξ, q) + �2η(ξ, q),

Seη+1(ξ, q) = �1η(ξ, q) − �2η(ξ, q),
(12)

where

�1η(ξ, q) = 2η+1/2 exp(2
√

q sin ξ)
[
cos

(
ξ

2 + π
4

)]2η+1

(cos ξ)η+1 ,

�2η(ξ, q) = 2η+1/2 exp(−2
√

q sin ξ)
[
sin

(
ξ

2 + π
4

)]2η+1

(cos ξ)η+1 .

(13)

The Mathieu functions (12) for q = 100 and η = 1, 2 are shown in figure 5. It is
clear that these functions are qualitatively similar to the numerically calculated solutions
Tη(kηy y) of equation (6) with real internal bias field defined by equation (2) that are shown in
figure 4. Both sets of solutions for low values of the index η are localized near the stripe edges
and in both sets each eigenvalue corresponds to two degenerate eigenfunctions: symmetric
and anti-symmetric with respect to the stripe centre. It is, however, clear that we cannot
expect quantitative agreement between the localized solutions of equation (6) for two different
coordinate dependences of the internal field as in the spatial interval near the stripe edge
(0.35 < y/ l < 0.45), where the spin-wave eigenfunction with low index η has a maximum,
the absolute values of two fields Hi(y) and HM(y) are substantially different. To achieve
a quantitative agreement between the two models we can require that the fields Hi(y) and
HM(y) are close to each other near the edge of the stripe where the localized mode has a
maximum. Then, for each given value of the uniform external bias field H we can determine
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Figure 5. The even (left panel) and odd (right panel) Mathieu functions with low indices. ξ = πy/ l
is the reduced coordinate along the stripe width.

the appropriate value of the parameter HM0 of the ‘Mathieu model’ field equation (7) from the
minimization of the following functional:

J (H, HM0) =
∫ y2

y1

[Hi(H, y) − HM(HM0, y)]2 dy, (14)

where the integration limits y1, y2 are chosen to include in the integration interval maximum
of the corresponding Mathieu function of order η.

When the parameter HM0 of the Mathieu model field (7) is determined, we can find from
equation (9) the parameter q(HM0) which determines the profile of the Mathieu functions. The
minimization procedure is illustrated in figure 6 for the Mathieu function of order η = 1 when
the external bias magnetic field H is equal H = 1.5 kOe. The obtained value of the Mathieu
parameter HM0 is HM0 = 11.2 kOe, which results for a typical permalloy stripe of the width
l = 1.0 µm in a value of the q parameter (9) equal to q(HM0) = 103.

To determine the characteristic values of the in-plane wavenumber kηy for the localized
exchange-dominated spin-wave modes Tη(kηy y) existing in the strongly inhomogeneous
internal bias field of the transversely magnetized stripe we shall use the analogy with usual
exchange-dominated thickness spin-wave modes existing in the homogeneous internal bias
field of in an infinite magnetic film (modes of the spin-wave resonance) [25]. Our eigenvalue
problem equation (6) differs from the eigenvalue problem for the modes of spin-wave resonance
(equation (11) in [20]) only due to the coordinate dependence of the internal bias field in our
case. Thus, the structure of the expression for the eigenvalue should be similar in both problems,
and we write the expression for our eigenvalue λη in the form analogous to the form of the
eigenvalue expression in [25] (see equation (17) in [2]):

λη = ω
η

H

ωM
+ αk2

ηy, (15)
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(a)

(b)

Figure 6. The model internal field profiles (a) and the first localized mode profile (b) in a transversely
magnetized stripe.

where the frequency ω
η

H proportional to the effective internal magnetic field H η

i (ωη

H = γ H η

i )
for a spin wave mode is defined by the formula (obtained from equation (2))

ω
η

H (H, HM0) = γ H − ωM Nη(HM0). (16)

The effective demagnetization factor Nη for the spin-wave mode with index η is defined
by the expression

Nη(HM0) =
∫

dy T 2
η (y, HM0)Nyy(y)∫

dy T 2
η (y, HM0)

. (17)

The integration in the integrals (17) is done along the whole region inside the stripe where
the coordinate-dependent effective demagnetizing factor Nyy(y) is positive.

Finally, using equations (11) and (15) we obtain an explicit approximate expression for
the characteristic wavenumber kη of the localized spin wave mode of order η:

kηy(H, HM0) =
√[

λη(HM0) − ω
η

H (H, HM0)

ωM

]
1

α
. (18)

The frequency of the first exchange-dominated thickness mode of a rectangular dot (m = 1,
n = 1, p = 1) was calculated using a standard formula [22]:

ωmnp = ω
mnp
H + αωMκ2

mnp, (19)

where the non-zero kz-component of the wavevector is taken into account,

k2
mnp = k2

mx + k2
ny + k2

z = (mπ/w)2 + (nπ/ l)2 + (pπ/L)2 ,
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and the effective bias magnetic field for this mode ω
mnp
H was found using expressions similar

to equations (8) and (9) in [14] for the following distribution of variable magnetization in the
mode (1, 1, 1),

mm=1,n=1,p=1(x, y, z) = Ms cos

(
πx

w

)
cos

(
πy

l

)
cos

[
π

L

(
z +

L

2

)]
, (20)

that assumes unpinned surface spins at the top and bottom surfaces of the permalloy dot and
total ‘dipolar’ pinning at the lateral edges.

Now we have all the necessary information to use the approximate formalism developed
by Guslienko et al [17] (see equations (7)–(11) in [17]) for calculation of the magnetic
field dependences of all the frequencies of the standing spin-wave modes observed in the
tangentially magnetized sub-micron-sized rectangular permalloy dots in the above-described
BLS experiments.

4. Comparison with experiment and discussion

We assume that the lowest mode in the experimentally measured spin-wave spectrum is the
mode mm=1,η=1(x, y) which according to equations (1) and (6) has the form

mm=1,η=1(x, y) = Ms cos(k1x x)Ce1(πy/ l), (21)

while the dipolar modes are described by sinusoidal functions given by equation (10) in [15]
along both in-plane directions. The approximate profiles of the simplest spin-wave modes of
a rectangular dot are shown in figure 7. The spin-wave eigenmode given by equation (21)
is localized along the bias field direction near the rectangular element edges y = ±l/2 (see
figure 7(a)).

To calculate the dipolar modes of the rectangular magnetic element we used simple
sinusoidal distributions of variable magnetization in the mode (see equation (10) in [14])

mmn(x, y) = Ms�m(kmx x)�n(kny y). (22)

We note that in contrast to the case of the dipolar localization described in [1], in our
current experiment the longitudinal (along the bias field) size of the permalloy dot (0.8 µm) is
so small that the dipolar localization of the lowest dipolar spin-wave modes does not take place
and equation (21) including the first Mathieu function gives a reasonably good description of
the first mode spatial distribution.

The results of comparison of our calculation with the results of the above BLS experiment
for 800 × 550 nm permalloy rectangular elements are presented in figure 8. It is clear that
our approximate theory gives a good quantitative description of the experiment in almost all
the interval of the bias fields used. We notice that the slope of the exchange mode localized at
the edge (m = 1, η = 1) is lower than that of the band of dipolar modes with the indices (m,
n) and the mode profiles given by equation (22). This seems to be a characteristic feature of
these spin-wave modes and has been already observed in tangentially magnetized cylindrical
dots [2]. We can understand such a behaviour considering the fact that this mode is localized
near the dot edges where the internal field is strongly inhomogeneous. With the increase of
the applied bias field the profile of the internal bias field does not change qualitatively, and,
therefore, the profile of the localized mode changes slowly with the variation of the applied
field. This explains the relatively weak field dependence of the localized mode frequency on
the applied magnetic field.



7720 G Gubbiotti et al

Figure 7. The spin-wave mode profiles in a rectangular dot magnetized along its side marked l: (a)
the lowest exchange dominated localized mode with the indices m = 1, η = 1; (b) the first dipole
dominated mode, m = 1, n = 1; (c) the dipole-dominated mode with the indices m = 2, n = 1.

Figure 8. Comparison of experimental (open circles) and calculated (dotted line for thickness
exchange mode, dashed lines for dipolar modes with the indices (m, n), solid line for exchange-
dominated localized mode m = 1, η = 1) dependences of the spin-wave mode frequencies on
the magnetic field intensity in the range 0.25–3.0 kOe. The frequency of the localized mode is
calculated using equation (18) and the mode spatial distribution is given by equation (21).
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5. Conclusions

Our calculations and experiments have demonstrated that the approximate qualitative theory
based on the quantization of projections of the spin-wavevector in the dispersion equation for
a continuous magnetic film gives a reasonably good quantitative description of the standing
dipole-exchange spin-wave modes in nano-sized, non-interacting, thin rectangular magnetic
dots. We were able to identify two types of spin-wave modes in a dot: the dipole-dominated
(localized near the element centre) and the exchange-dominated (localized near the element
edges), and to reproduce their frequency dependence on the intensity of the bias magnetic field.
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